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A MIXING-LENGTH METHOD FOR PREDICTING
HEAT TRANSFER IN ROUGH PIPES
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Abstract—A mixing length formulation which includes a finite value at a hypothetical surface within the
roughness is used to predict heat transfer in rough pipes. Several empirical parameters are required in
this formulation and these were obtained by making comparisons of predictions, using a range of these
parameters, with experiments. The experiments were carried out with airflow in pipes roughened
internally with screw threads in the Reynolds number range 2 x 10* to 3 x 10°. Simple correlations are
suggested for the variation of the two most important empirical parameters namely the surface mixing
length and the cavity Stanton number. Using these correlations enables the appropriate form of the energy
equation for one-dimensional flow to be solved numerically in the thermal entrance region with any
form of thermal boundary condition and the Prandtl numbers other than unity. Good agreement is shown
for measurements in the thermal entrance region with a uniform wall heat flux.

NOMENCLATURE
A, constant in the mixing length equation;
B, constant in the mixing length equation;
C;, friction factor 2t./pui;
C,,  specific heat;

e, roughness height;

€5, sand grain roughness size;

h, heat-transfer coefficient;

k, constant in the mixing length equation;
1 mixing length;

Nu.,  Nusselt number;
Pr, Prandtl number;
q, heat flux;

¥, radius;

R, Reynolds number Lt :
Vv

2

ug 7,

Re, Reynolds number —=;
v

St, Stanton number;

Sr,  cavity Stanton number;

t, temperature:

T, dimensionless temperature defined in text;
u, velocity;

u*,  dimensionless velocity u / \/ (E‘f),
P

X, distance along the pipe;
» radial distance from wall (=r.—r):

y*,  dimensional distance from wall

Greek symbols
o, thermal diffusivity;
Ly eddy diffusivity of momentum;
Eps eddy diffusivity of heat;
v, kinematic viscosity:
1, shear stress.

*Mechanical Engineering Department, The University of
Manchester Institute of Science and Technology, P.O.
Box 88, Manchester M60 1QD, UK.

Subscripts
0, at the hypothetical surface:
¢, at the centre;
A at the position from which &, is taken
constant;
w, at the wall;
b, bulk mean value;
i, initial value.

1. INTRODUCTION

IN THIS article we will describe a semi-empirical
method for predicting the flow and heat transfer in
rough pipes. The method is applied to fully developed
turbulent flow in the regime up to and including the
fully rough situation with developing thermal boundary
layers and with either uniform or axially varying
boundary conditions. In principle the technique could
also be applied to developing boundary layer flows.

The mixing-length model is used to describe the
turbulence effects and the Van Driest [ 1] modification
is included for the region near to the wall. The rough
surface is replaced by a hypothetical surface at a
position within the roughnesses where the velocity is
assumed to be zero but where the mixing length, and
therefore the eddy diffusivity, is finite. Earlier predic-
tions have been confined to fully rough situations
where Nikuradse's rough wall-law [2] has been used
in conjunction with the integral equations of the
boundary layer. The physical model suggested in this
article should also be applicable in the region of
transition from smooth to fully rough behaviour.

With the proposed mixing length model of the rough
surface effects the velocity profiles and friction factor
variation with Reynolds number can be predicted. The
additional assumption of a turbulent Prandtl number
enables the numerical solution of the energy equation
to be carried out. However because the true surface
temperature is different from the hypothetical surface
temperature it is necessary at this stage to introduce
the further concept of a surface Stanton number.
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Several empirical parameters are required in this
method but it will be shown that these can be fairly
simply correlated. If these correlations are reliable
then the method should enable predictions to be made
of the effect of thermal boundary conditions on rough
pipe heat transfer and also of the variation of Stanton
number in the thermal entrance region.

Some experimental work was also carried out to
establish the empirical parameters but further work
on a wider range of roughness shapes will be required
to establish confidence in the method. Measurements
were made of velocity and temperature profiles,
pressure loss and heat transfer in a set of three circular
pipes with internal roughnesses of Whitworth thread
form previously used by Furber and Cox [3]. The
empirical constants were determined from these
measurements and it will be suggested that these appear
to be applicable over a wider range of situations.

2. SOME PREVIOUS WORK

Nikuradse established the form of the law of the
wall for a rough surface from his experiments on pipes
with sand coated internal surfaces. With close packed
sand the heights of the roughness projections will not
be the same as the average grain size so that it is
difficult to compare results obtained with this con-
figuration with other forms of roughness. Comparison
of friction factors with other roughness forms has led
to the concept of “equivalent and grain roughness”™
Reynolds [4] gives a table of ratios of equivalent and
grain size to actual roughness height.

Early work on heat transfer with spring ring rough-
ness elements, both widely and closely spaced, was
carried out by Nunner [5] who suggested the
correlation

Nu = 0.383Re%8Cpm

(Re L8
m=\|—— .
100)

where

Dipprey and Sabersky [6] used a sand grain type
of roughness to extend the Nikuradse form of the wall
law into the transition region. They also used the con-
cept of a surface or “cavity” Stanton number and
suggested the correlation

Cp28t -1
\/i(Cf f 2)
Owen and Thomson [ 7] used the same concept and

carried out experiments on flat plates. Their correlation
for circular pipes is

‘ 1 178
1/St = uyt (u;f +§+v7->

= 5.19¢} 02pro44 848,

where
1
B=—{e}y "pPr-*
o

and
o =052, m=1045 and n=08.
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Further experiments on vee shaped grooves in a
square duct are described by Dawson and Trass [8]
and for repeated rib type roughnesses by Webb and
Eckert [9] and by Webb et al. {10]. All these workers
correlated their results using the Dipprey and Sabersky
method and this was mainly satisfactory but some
variation in the power of ] was observed.

A more fundamental approach to the roughness
problem was made by Jayatilleke [11] who provided
correlations for a near-wall region to be used as initial
values in a numerical solution.

The present article will describe a method of calcu-
lating the whole of the flow region from a hypothetical
zero-slip wall position. A finite mixing length I, is taken
at this position and a cavity Stanton number Sr' is
required to account for the difference in temperaturc
between the true wall and hypothetical surface. For
continuous roughness correlations for these quantities
will be suggested in the forms

l5 = fle®)
St' = fle™, Pr}.

3. THEORETICAL ANALYSIS

This solution deals with heat transfer with fully
developed turbulent flow in a smooth or rough pipe
with boundary conditions of uniform wall temperature,
uniform wall heat flux or with axial variation of either
of these quantities. The fluid physical properties are
assumed constant and axial conduction and viscous
dissipation in the fluid are neglected.

3.1. Eguation of motion
In the fully developed situation
N .t
SR A )

o+
Teo Ve ¥

(14 )
U
T & dv\v

em\ dut v
(1+—§)dv+ - l_;vi' (2

This equation can be solved for a chosen value of yf
if some specification is made for g,. In this calculation
two regions were used.

3.1.1. Wall region 0 < y* < 37", In this region the
mixing length variation proposed by Van Driest [1]
was used with an additional term for the surface mixing
length and with the inclusion of a second order
correlation term, i.e.

l+ l+ kv+ ‘,+ N2
o =%+—;r{1-exp«-y+/A*>} —B(—'F) (3)
and
d
f3]
dy
or

f_”j = J*2 [éf:} {4)
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substituting (4) in (2) gives

dut  —E+3 [T+ -y yE]
E}TI = l+ 2 ° (5)
Using the specification of I* from (3) this equation was
solved by the Runge-Kutta—Mersen integration tech-
nique to obtain the variation of u™* up to the selected y;".
3.1.2. Core region y; < y* < yS. In this region the
&m value was assumed constant at the value reached
in the wall region where y* = y;".
With this simplification the u* variation is simply

u+—<v+—y+2 ' Ve (6)
S\ 2vd N\ +em/v

where C is obtained from the values at y;".
Having solved for the velocity profile the Reynolds
number can be calculated since

Re = 2ujr} 1))
and
+ 2 [ ot Q.+
Uy =13 utrtdr’. (8)
re 0

For a given pipe diameter therefore, the friction factor
Reynolds number relation follows. The &, variation is
also available for use in the energy equation solution.

3.2. Energy equation
With the above assumptions the energy equation is

o 10 ot
uaz;a‘:r'(a'f’fh‘)a}. (9)

This equation can be non-dimensionalised as before
except for t which requires a different definition
depending on the boundary conditions.

(1) For uniform wall temperature T = ;
. =t
(2) For uniform wall heat flux T = ———.
9u/PCpu,

Substituting into the energy equation and allowing
either t,, or q,, to be a function of x gives

L, . for 1 2], /1 &\éT
=+ Tr=—— —+—}—1 (
v {8R+f } | Pr+v ort (10)

where
dr,,
f (for t,, varying)=[ . dR (11)
. 1 dq,
[ (for g,, varying) = q_ . % (12)

This is a parabolic equation which can be solved
step by step along the pipe. However, since the tem-
perature and velocity profiles are steep close to the wall
it is necessary in a numerical solution to use small
increments of r* in this region. This can be achieved
by changing the independent variable to «* and using
equal steps of u*.

The energy equation (10) with this transformation
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can be written
oT drt
ul |+ T
w <(?R f )du+
1 @ +(1 +t:;, 0T du* 13)
=— rrl—+—
r*out Pr v /éut drt
with
Em
&= —
" Pr,

where Pr, is a constant turbulent Prandtl number.
The boundary conditions were:

At the wall

dT dy* —ut

u+ — 0’ - — ,“+ 2]
du 0 du 0 1 +8m” 1
Pr v Pr,

for a specified heat flux or T, = 1 for a specified wall
temperature.

The true and hypothetical wall temperature are
related by the cavity Stanton number defined as

s Gw
(tw_ tO)pCpuc

where ¢, = go.

At the centre

= —— | = constant
u U, constant.
¢ 1+C

The Crank-Nicholson implicit finite difference
method with an arbitrary weighting factor was used
to solve equation (13) with 60 equal increments of u™.
The weighting factor was taken at 0.9, although other
values were tried but found to make little difference,
and step lengths in the R direction were doubled after
every ten steps. A typical run time on the UM.R.C.C.*-
CDC 7600 was 2s to reach 150 diameters downstream
of the step in wall heat flux or temperature.

A turbulent Prandtl number of 0.9 was used in all
cases and the Stanton number was calculated from the
predicted temperature profiles.

4. EXPERIMENTS

The experiments were carried out using a smooth
pipe and a set of three brass pipes which were
roughened with geometrically similar Whitworth screw
threads machined internally. The pipe lengths were
3.65 m and nominal diameters 102 mm with Whitworth
thread forms as tabled below.

Wall thickness  Pitch Thread height

Pipe (from of thread) (m) (mm) ¢ e/d
No. 1. 1.83 0.423 0.208 0.0021
No. 2. 183 1.06  0.635-0.752 0.00615
No. 3. 5.53 2.31 1.308 0.0127

The working fluid was air and the Reynolds number
range was from 2 x 10* to 3 x 10°.

*University of Manchester Regional Computer Centre.
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5. RESULTS
5.1. The surface mixing length correlation

It should be borne in mind that we are faced with
determining optimum correlations for the five un-
known parameters which appear in equation (3), ie.
lo.k, A", Band y;". However it was hoped that smooth
pipe values of k, 4% and y;" would be applicable to
the rough pipes. Values of k = 042 and A™ = 26 were
selected and are well-known smooth pipe values. When
making comparisons with experiments the position of
the hypothetical wall was taken at the mean height of
the roughnesses.

The program for solving the equation of motion was
run with various combinations of B and y, for the
smooth pipe case (lo = 0). Typical runs are compared
with experimental values on Fig. | and show that good
agreement can be obtained with different combinations

201

Re=2 54 x i0¥

——0 0145 Yc'
—-= 047 0.300 Y
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bttty " : R s
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F1G. 1. Comparisons between choices of constants for
smooth pipe velocity profile.

of B and y;*. A finite value of B gives slightly better
predictions of velocity profiles but the simplification
of using B = 0 does not result in much error. The value
of ;" which gave the best correlations under these
conditions is y;" = 0.145y}.

Having selected these parameters we are left with
Ip {or I5). However, it is not a simple matter to
correlate this parameter since it may be both roughness
and Reynolds number dependent. Hopefully, therefore,
a correlation of the form I3 = f(e") would seem
reasonable.

The following procedure was used to establish this
relationship. The program was run with a given value
of i3 for a range of values 3. This was repeated for
a range of values of I§ and by comparing the predicted
friction factor results with experimental values, it was
possible to establish a relationship between I§ and e?.
The result is shown in Fig. 2. Also shown is the same
procedure applied to Nikuradse's results but using
e =¢/2.

Some disagreement between the present experiments
and those of Furber and Cox was obtained with the
pipe of smallest roughness (0.2 mm) possibly due to
deposit which was observed in the base of the screw
threads. This was found to be difficult to remove and
could have had the effect of reducing the roughness
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» Roughpipe |
o Rough pipe 2
o Rough pipe 3

#47Bond of Nikuradse’s results using e=e_,,

( results from [3])

log ¢!
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FiG. 2. Correlation for the surface mixing length variation,

heights. Because of this influence the data of Furber
and Cox was used for this pipe on Fig. 2.

This curve is reasonably approximated by the

expression
lo =Cte™)"
where C = 0.154, n = 0.72.

At the lower end some departure is apparent and it
would no doubt be possible to obtain an improved
fit with a more complex correlation but in view of the
rather limited data this would not seem justifiable.

The authors are well aware that the procedure of
obtaining a correlation from only three roughness
forms is clearly questionable, but a large amount of
experimental work would be necessary to obtain a
general correlation. The suggested correlation accounts
for the influence of the surface roughness by separating
this effect from that of the main flow and should allow
the calculation method to include a wider range of
boundary conditions than those specificaily used in
establishing the correlation.

The remainder of this section will show comparisons
of the predictions using the above correlation with the
measurements. The additional correlation necessary for
the heat transfer will be discussed below.

5.2. Flow and friction measurements and predictions

Figure 3 shows comparisons of measured and calcu-
lated velocity profiles for the roughest pipe. The pre-
dictions compare well and compared equally well for
the other roughnesses.

18 Ok
”{ &
150 /d)'
&
i
12.0 /(0,(
+
<
v gol- el -
x}/e
ol
& o—(}//(c’ Experiment Prediction Re
” x - 0i64x10°
30 ° - 0234x10°
+ "  0.638x10%
[e] L bk b bt | A bt 1 a gl L, A
[[e) 10?2 102

FiG. 3. Measured and predicted velocity profiles for rough
pipe 3.
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Friction factor comparisons are shown on Fig. 4
which includes the results of Furber and Cox [3].
Some difference was observed on the smallest rough-
ness. The theoretical prediction based on the corre-
lation of Fig. 2, which of course is based on results
taken from Fig. 4, agrees well with the experimental
values except in the transition region, where
Nikuradse’s results show a more marked reduction.
The simple power law correlation for I§ however does
not fit well at the lower end of the points on Fig. 2
and the experimental behaviour could be more closely
predicted by a better correlation in this region. How-
ever, the prediction method produces the correct
physical behaviour in that the friction factors all
approach the smooth pipe curve at lower Reynolds
numbers.

5.3. Heat transfer
The concept of cavity Stanton number has been used
previously by Dipprey and Sabersky as was mentioned
above. It was obtained in these experiments by deter-
mining the value that was required to make the pre-
diction agree with the experiments according to:
1 1 1

St st (measured) St (predicted)”

Here the measured Stanton number is based on the
wall to bulk temperature difference while the predicted
value is based on the hypothetical surface to bulk
difference. It follows that the cavity value St’ is based
on the wall to hypothetical surface difference.

The result of this procedure is shown on Fig. 5,
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F1G. 5. Correlation for the cavity Stanton number variation.
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which indicates that a correlation is possible for this
quantity in the same way as for /§ in the form

1
=52 +70.2
&= 520e’]

or assuming the usual Prandtl number dependence

1

— =60 +70.2 P 0.4.

5= 600" 12 Pr]

Note also that the “cavity Stanton number” in this
work is based on the bulk velocity instead of the friction
velocity used by Dipprey and Sabersky.
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F1G. 6. Measured and predicted temperature profiles for
rough pipes.

The remainder of this section is concerned with com-
parisons made using this correlation. Figure 6 shows
temperature traverses compared with predictions and
in this and all subsequent comparisons the predictions
were made using the uniform wall heat flux boundary
condition. In the central region only moderate agree-
ment is shown but it should be borne in mind that in
addition to the empirical constants involved in the
determination of velocity and eddy diffusivity the addi-
tional assumption of a turbulent Prandtl number is
required (taken as 0.9 in these predictions).

Figure 7 shows smooth pipe results for the variation
of Stanton number in the entrance region. Here the
results are also compared with the theoretical results
of Deissler [12] and Sparrow et al. [13] and exper-
imental results of Wolf and Lehman quoted in [13].

20
—-.— Prediction |x10°
I8 —II2 1x10°
——=[I3 1x10°
1.6 Experiment

FiG. 7. Stanton number variation in the thermal entrance
region of a smooth pipe.
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A similar method for the velocity and eddy diffusivity
predictions was used in [13] but an eigenvalue method
was used for the thermal solution. These predictions
are probably better than the present numerical solu-
tions and indicate that our mixing length variation
could perhaps be improved. The effect of Reynolds
number is small in the entrance region. Uniform wall
temperature boundary conditions were also calculated
but differed only slightly from uniform wall heat flux.
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Fic. 8. Stanton number variation in the thermal entrance
region for rough pipe 3.
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F1G. 10. Comparison of theory with experimental Stanton
numbers and friction factors for sand grain roughness of
Dipprey and Sabersky [6]. (a) e,/r = 0.0138. (b} es/r = 0.0488.
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Figure 8 shows similar predictions and measure-
ments for the roughest pipe and it is clear that the
variation of Stanton number is the same in the entrance
region as the smooth pipe.

Figure 9 shows the fully developed Stanton number

variations with Reynolds number for all the rough
pipes. Dipprey and Sabersky’s correlation is also shown
for comparison but gives results rather higher than
those measured. Finally, as a test of the prediction
method, the program was run for four of the situations
measured in [6]. The agreement, shown on Fig. 10, is
good, particularly as regards the effect of Prandd
number.
To summarise it would appear that the suggested
correlations offer the possibility of calculating the
pressure loss and heat transfer in pipes with continuous
roughness and with thermal boundary conditions of
any type including axial variation of heat flux or
temperature.

CONCLUSIONS

1. A prediction method has been proposed for flow
and heat transfer in rough pipes in which the rough
surface is replaced by a hypothetical surface of zero
velocity at which there is a finite value of the mixing
length.

2. The method involves the choice of a number of
empirical constants for which satisfactory choices of
corresponding values appear to be the same as those
suitable for smooth pipes.

3. The additional correlations required for rough
pipes are the surface mixing length and the cavity
Stanton number variations. For distributed roughness
these are

1§ =0.154[¢*]°72
and

i — 60{9*]0'2[})?]0'4.
St

4, With these choices predictions of velocity profiles,
friction factors, temperature profiles and Stanton num-
ber variations in the thermal entrance region show
fairly good agreement with values measured in screw
thread roughnesses and in sand grain roughnesses
where the roughness heights are taken respectively as
equal to the thread heights and half the sand grain size.
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PREVISION DU TRANSFERT DE CHALEUR DANS LES CONDUITES RUGUEUSES
A LAIDE D'UNE METHODE DE LONGUEUR DE MELANGE

Résumé— Afin de déterminer le transfert de chaleur dans les conduites rugueuses. on utilise une hypothése
de longueur de mélange qui présente une valeur finie sur une surface hypothétique située au niveau des
rugosités. Cette formulation nécessite 'introduction de plusieurs paramétres empiriques, ces derniers étant
obtenus en effectuant la comparaison des prévisions avec les expériences sur un ensemble de valeurs de
ces parametres. Les expériences ont été effectuées pour un écoulement d’air dans des tubes corrugués a
aide d’enroulements en hélice dans un domaine de nombres de Reynolds allant de 2.10* & 3.10°. Des
relations simples sont proposées pour les variations des deux paramétres empiriques les plus importants:
la longueur de meélange sur la surface et le nombre de Stanton des cavités. L'emploi de ces relations
permet de résoudre numériquement 'équation d’énergie pour un écoulement unidirectionnel dans la
zone d'établissement du régime thermique pour des conditions aux limites quelconques et pour des
nombres de Prandt! différents de unité. Un bon accord a été obtenu avec les mesures dans la zone
d’¢tablissemnent du régime thermique a flux pariétal constant.

EINE MISCHUI}?GSWE}GLKNGEN-METHODE ZUR BESTIMMUNG DES
WARMEUBERGANGS IN RAUHEN ROHREN

Zusammenfassung—Zur Bestimmung des Wirmeiibergangs in rauhen Rohren wird eine Mischungs-
weglinge verwendet, welche so formuliert ist, daB sie an einer hypothetischen Oberfliache innerhalb der
Rauhigkeiten endliche Werte annimmt. Zur Formulierung dieser Mischungsweglinge werden sieben
empirische Parameter benstigt; diese werden unter Verwendung einer Reihe solcher Parameter durch
Vergleich von berechneten Werten mit Versuchswerten ermittelt. Die Versuche wurden in luftdurch-
strOmten Rohren durchgefiibrt, welche Rauhigkeiten in Form eines Schraubengewindes aufwiesen. Die
Reynoldszahl wurde von 2 x 10* bis 3 x 10° variiert. Es werden einfache Korrelationsformeln zur
Darstellung der Abhingigkeit von den beiden wichtigsten empirischen Parametern, ndmlich der
Mischungsweglinge an der Oberfliche und der Stantonzahlin den Rauhigkeitsvertiefungen, vorgeschlagen.
Fiir den Fall der eindimensionalen Stromung ermdglichen diese Bezichungen eine numerische Losung
der entsprechenden Energiegleichung fiir den thermischen Einlaufbereich fiir jede Form der thermischen
Randbedingungen und fiir von 1 abweichende Prandtizahlen. Bei konstanter Wirmestromdichte an der
Rohrwand ergibt sich im thermischen Einlaufbereich eine gute Ubereinstimmung mit MeBwerten.

MPUMEHEHWE METOOA NMYTHU CMEWEHWA ANTA PACHETA TEIIJIOOBMEHA
B WIEPOXOBATBIX TPYBAX

AHHOTAUMA — METOA NyTH CMEIUEHUS, B KOTOPOM HCNOAL3YETCS KOHECYHAS BEIMMHHA JUTHHBI NYTH
CMELLCHUS HA HEKOTOPOH THnOTeTHYECKOH NMOBEPXHOCTH NPH HAAW4MM UIEPOXOBATOCTH, HCNONb-
3yercs s pacyera Termoobmena s wepoxoparsix Tpybax. [pu Takom noaxone tpebyercs onpene-
JINTh HECKONBKO IMITHPHUECKHX NapaMeTpoB, U OHU OblM HailaeHbl NYTEM CPABHEHHS PacveToB B
JINANa30He 3TUX NapaMeTPOB ¢ SKCTIEPUMEHTA/ILHBIMU JaHHBIMK, DKCNEPHMEHTBI MPOBOAKINCEL ANs
TEYEHHUs BO3Ayxa B TpyOax, LUEPOXOBATOCTb BHYTPH KOTOPBIX HAHECEHA B BHAE BHHTOBOM pe3nlbl,
B AManazoHe yucna PeitHonbaca ot 2 X 10% no 3 x 10°. TlpeanoxeHn MpocThle 3aBHCHMOCTH ANd
ONHMCAHMS MIMCHEHMH ABYX Haubosee BaXHBIX IMITHPHYECKHX NAPAMETPOB, a UMEHHO: 3HAYCHHUS
AJTHHBL NYTH CMEILEHUS HA TIOBEPXHOCTH # yHena CranToHa Ans NONOCTH. JTH 2aBHCHMOCTH NO3BO-
SISIOT YHCIACHHO PELIXTH YPABHCHHE JHEPIHM B COOTBETCTBYIOUIEM BHAE AJIA OZHOMEPHOIO TEYEHHUA
Ha BXOJHOM TEIUIOBOM Y4acTke mpH mobOM TenioBOM rpaHHYHOM YCNOBHMH W uMcnax [fpannrns,
OTJIMYHBIX OT eAuHULULL. [ToxazaHo XOpollee cornacoBaHNEe HIMEPEHUH A TEMJIOBOIO HAYaJIbHOTO
yYacCTKa ¢ PABHOMEPHBIM paclipe/ieNIeHHEeM NOTOKa TEIUia Ha CTEHKE.



