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Abstract-A mixing length formulation which includes a finite value at a hypothetical surface within the 
roughness is used to predict heat transfer in rough pipes. Several empirical parameters are required in 
this formulation and these were obtained by making comparisons of predictions, using a range of these 
parameters. with experiments. The experiments were carried out with airflow in pipes roughened 
internally with screw threads in the Reynolds number range 2 x lo4 to 3 x IO’. Simple correlations are 
suggested for the variation of the two most important empirical parameters namely the surface mixing 
length and the cavity Stanton number. Using these correlations enables the appropriate form of the energy 
equation for one-dimensional flow to be solved numerically in the thermal entrance region with any 
form of thermal boundary condition and the Prandtl numbers other than unity. Good agreement is shown 

for measurements in the thermal entrance region with a uniform wall heat flux. 

NOMENCLATURE 

constant in the mixing length equation; 

constant in the mixing length equation; 

friction factor 2z,/p& ; 
specific heat; 

roughness height; 
sand grain roughness size; 
heat-transfer coefficient; 
constant in the mixing length equation; 

mixing length; 

Nusselt number; 
Prandtl number; 
heat flux; 
radius; 

Reynolds number y ; 
v 

uz.rC 
Reynolds number - * 

Y ’ 
Stanton number; 
cavity Stanton number; 

temperature: 
dimensionless temperature defined in text; 

velocity; 

dimensionless velocity u 
L 

.1’JC > 
- ; 
.P 

distance along the pipe; 
radial distance from wall (= r, - r): 

dimensional distance from wall ~. 
V 

Greek symbols 

a, thermal diffusivity; 

& ntr eddy diffusivity of momentum; 

&iZ, eddy diffusivity of heat; 

V, kinematic viscosity: 

2, shear stress. 

*Mechanical Engineering Department, The University of 
Manchester Institute of Science and Technology, P.O. 
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Subscripts 

0, at the hypothetical surface : 
c, at the centre; 

I, at the position from which E,,, is taken 

constant; 

U’ 

b: 

at the wall; 
bulk mean value; 
initial value. 

1. INTRODU~jON 

IN THIS article we will describe a semi-empirical 

method for predicting the flow and heat transfer in 
rough pipes. The method is applied to fully developed 
turbulent flow in the regime up to and including the 
fully rough situation with developing thermal boundary 
layers and with either uniform or axially varying 
boundary conditions. In principle the technique could 
also be applied to developing boundary layer flows. 

The mixing-length model is used to describe the 

turbulence effects and the Van Driest [l] modification 
is included for the region near to the wall. The rough 
surface is replaced by a hypothetical surface at a 
position within the roughnesses where the velocity is 
assumed to be zero but where the mixing length, and 
therefore the eddy diffusivity, is finite. Earlier predic- 
tions have been confined to fully rough situations 
where Nikuradse’s rough wall-law [2] has been used 
in conjunction with the integral equations of the 
boundary layer. The physical model suggested in this 
article should also be applicable in the region of 
transition from smooth to fully rough hehaviour. 

With the proposed mixing length model of the rough 
surface effects the velocity profiles and friction factor 
variation with Reynolds number can be predicted. The 
additional assumption of a turbulent Prandtl number 
enables the numerical solution of the energy equation 
to be carried out. However because the true surface 
temperature is different from the hypothetical surface 
temperature it is necessary at this stage to introduce 
the further concept of a surface Stanton number. 

142s 



A. P. HATTON and P. J. WALKLATE 

Several empirical parameters are required in this Further experiments on vee shaped grooves in a 
method but it will be shown that these can be fairly square duct are described by Dawson and Trass [S] 
simply correlated. If these correlations are reliable and for repeated rib type roughnesses by Webb and 
then the method should enable predictions to be made Eckert [9] and by Webb er al. [lo]. All these workers 
of the elfect of thermal boundary conditions on rough correlated their results using the Dipprey and Sabersky 
pipe heat transfer and also of the variation of Stanton method and this was mainly satisfactory but some 
number in the thermal entrance region. variation in the power of e.: was observed. 

Some experimental work was also carried out to 
establish the empirical parameters but further work 
on a wider range of roughness shapes will be required 
to establish confidence in the method. Measurements 
were made of velocity and temperature profiles, 
pressure loss and heat transfer in a set of three circular 
pipes with internal roughnesses of Whitworth thread 
form previously used by Furber and Cox [3]. The 
empirical constants were determined from these 
measurements and it will be suggested that these appear 
to be applicable over a wider range of situations. 

A more fund~ental approach to the roughness 
problem was made by Jayatilleke [ll] who provided 
correlations for a near-wall region to be used as initial 
values in a numerical solution. 

The present article will describe a method of calcu- 
lating the whole of the Aow region from a hypothetical 
zero-slip wall position. A finite mixing length !. is taken 
at this position and a cavity Stanton number St’ is 
required to account for the difference in temperature 
between the true wall and hypothetical surface. For 
continuous roughness correlations for these quantities 
will be suggested in the forms 

2. SOME PREVIOUS WORK 

Nikuradse established the form of the law of the 
wall for a rough surface from his experiments on pipes 
with sand coated internal surfaces. With close packed 
sand the heights of the roughness projections will not 
be the same as the average grain size so that it is 
difficult to compare results obtained with this con- 
figuration with other forms of roughness. Comparison 
of friction factors with other roughness forms has led 
to the concept of “equivalent and grain roughness”. 
Reynolds [4] gives a table of ratios of equivalent and 
grain size to actual roughness height. 

3. THEORETICAL ANALYSIS 

This solution deals with heat transfer with fully 
developed turbulent flow in a smooth or rough pipe 
with boundary conditions of uniform wall temperature, 
uniform wall heat flux or with axial variation of either 
of these quantities. The Auid physical properties are 
assumed constant and axial conduction and viscous 
dissipation in the fluid are neglected. 

Early work on heat transfer with spring ring rough- 
ness elements. both widely and closely spaced, was 
carried out by Nunner [5] who suggested the 
correlation 

Ntc = 0.383Re0~68C~‘” 

3.1. Equation oftorion 
In the fully developed situation 

where 

Dipprey and Sabersky [IS] used a sand grain type 
of roughness to extend the Nikuradse form of the wall 
law into the transition region. They also used the con- 
cept of a surface or “cavity” Stanton number and 
suggested the correlation 

C,:‘2SI - 1 
--~ = 5.19e,i”.2 
JCCf/Z) 

Pro.44 - 8.48. 

Owen and Thomson [7] used the same concept and 
carried out experiments on flat plates. Their correlation 
for circular pipes is 

l/St = uh+ 
i 

1 17.8 
11; +-+--- 

B 4 1 

where 

R = ! te;l-mpr-n 
u 

and 

it = 0.52, m = 0.45 and n = 0.8. 

This equation can be solved for a chosen value of y: 
if some specification is made for a,. In this calculation 
two regions were used. 

3.1.1. Wall regiort 0 < yc <J:. In this region the 
mixing length variation proposed by Van Driest [I] 
was used with an additional term for the surface mixing 
length and with the inclusion of a second order 
correlation term, i.e. 

1’ 
-= 

sr’ 
~+liy-,~-exp(-I.+,~+))-B 
!:c .rc’ ’ 

(3) 

and 

or 

&n du+ 
-=: p2 - 
1’ 1 1 d_r+ 

(4) 
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substituting (4) in (2) gives 

du+ -:+:J[1+41+*(1 -y+/y:)] 
-= 
dy+ 1 +2 (5) 

Using the specification of I+ from (3) this equation was 
solved by the Runge-Kutta-Mersen integration tech- 
nique to obtain the variation of u+ up to the selected y:. 

3.1.2. Core region y: < J+ < y:. In this region the 
h value was assumed constant at the value reached 
in the wall region where y+ = y:. 

With this simplification the u+ variation is simply 

u+ = (I’+-$)(&)+c (6) 

where C is obtained from the values at y:. 
Having solved for the velocity profile the Reynolds 

number can be calculated since 

and 

Re = 2ub+r: (7) 

+ 
2 r: 

ub =z s u+r+ dr+. 
rc 0 

(8) 

For a given pipe diameter therefore, the friction factor 
Reynolds number relation follows. The E, variation is 
also available for use in the energy equation solution. 

St’ = - qw 
(L- to)PCpu, 

where qw = q. . 

At the centre 
3.2. Energy equation 

With the above assumptions the energy equation is u+ = UC, 

(9) 

This equation can be non-dimensionalised as before 
except for t which requires a different definition 
depending on the boundary conditions. 

t--ti 
(1) For uniform wall temperature T = -. 

t,--ti 

(2) For uniform wall heat flux T = z. 
4&C, UC 

Substituting into the energy equation and allowing 
either t, or qw to be a function of x gives 

u+uJ~C+f~T}=;1;$[r+(~+~)~] (10) 

where 

1 dt, 
f (for t, varying) = ~ - 

t,- ti dR 

f (for qw varying) = 1. dq,. 
qw dR 

(11) 

(12) 

This is a parabolic equation which can be solved 
step by step along the pipe. However, since the tem- 
perature and velocity profiles are steep close to the wall 
it is necessary in a numerical solution to use small 
increments of r+ in this region. This can be achieved 
by changing the independent variable to u+ and using 
equal steps of u + . 

The energy equation (10) with this transformation 

can be written 

with 

Eb = m 
Pr, 

where Pr, is a constant turbulent Prandtl number. 

The boundary conditions were: 

At the wall 

u+ =O* [lo = [~lo[, ;;“,i, ] 
’ I 

for a specified heat flux or T, = 1 for a specified wall 

temperature. 
The true and hypothetical wall temperature are 

related by the cavity Stanton number defined as 

= constant. 

The Crank-Nicholson implicit finite difference 
method with an arbitrary weighting factor was used 
to solve equation (13) with 60 equal increments of II+. 
The weighting factor was taken at 0.9, although other 
values were tried but found to make little difference, 
and step lengths in the R direction were doubled after 
every ten steps. A typical run time on the U.M.R.C.C.*- 
CDC 7600 was 2 s to reach 150 diameters downstream 

of the step in wall heat flux or temperature. 
A turbulent F’randtl number of 0.9 was used in all 

cases and the Stanton number was calculated from the 

predicted temperature profiles. 

4. EXPERIMENTS 

The experiments were carried out using a smooth 

pipe and a set of three brass pipes which were 
roughened with geometrically similar Whitworth screw 
threads machined internally. The pipe lengths were 
3.65 m and nominal diameters 102 mm with Whitworth 
thread forms as tabled below. 

Wall thickness Pitch Thread height 
Pipe (from ofthread) (m) (mm) r L’/d 

No. 1. 1.83 0.423 0.208 0.0021 
No. 2. 1.83 1.06 0.635-0.752 0.00615 
No. 3. 5.53 2.31 1.308 0.0127 

The working fluid was air and the Reynolds number 
range was from 2 x lo4 to 3 x 105. 

*University of Manchester Regional Computer Centre 
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5. RESUIII‘S 

A. P. H”i’rToh: and P. J. WALKLA’K 

5.1. The surfucr mixing len,qth corrrlurion 

It should be borne in mind that we are faced with 
determining optimum correlations for the five un- 
known parameters which appear in equation (31, i.e. 
lo, li, A+, B and 3%;. However it was hoped that smooth 
pipe values of X, A-+ and y; would be appiicable to 
the rough pipes. Values of A- = 0.42 and A’ = 36 were 

selected and are well-known smooth pipe values. When 
making comparisons with experiments the position of 
the hypothetical wall was taken at the mean height of 

the roughnesses. 
The program for solving the equation of motion was 

run with various combinations of B and 4,; for the 
smooth pipe case (I, = 0). Typical runs are compared 
with experimental values on Fig. 1 and show that good 
agreement can be obtained with different combinations 

FIG. 2. Correlation for the surface mixing length variation. 

heights. Because of this influence the data of Furber 
and Cox was used for this pipe on Fig. 2. 

This curve is reasonably approximated by the 
expression 

20 

16 

“* 12 
m-2 54x IO’ 

--- 0 47 -.- 0 

FIG. 1. Comparisons between choices of constants for 
smooth pipe velocity profile. 

of 3 and x:. A finite value of B gives slightly better 
predictions of velocity profiles but the simpI~fi~tion 
of using B = 0 does not result in much error. The value 

of J,+ which gave the best correlations under these 
conditions is yL’ = 0.145~:. 

Having selected these parameters we are left with 
lo (or li). However, it is not a simple matter to 
correlate this parameter since it may be both roughness 
and Reynolds number dependent. Hopefully, therefore, 
a correlation of the form 1: = ,f’(e+) would seem 
reasonable. 

The following procedure was used to establish this 
relationship. The program was run with a given value 
of lo’ for a range of values y>. This was repeated for 
a range of values of lot and by comparing the predicted 
friction factor results with experimental values, it was 
possible to establish a relationship between 1,’ and e” 
The result is shown in Fig. 2. Also shown is the same 
procedure applied to Nikuradse’s results but using 
c = eJ2. 

Some disagreement between the present experiments 
and those of Furber and Cox was obtained with the 
pipe of smallest roughness (0.2mm) possibly due to 
deposit which was observed in the base of the screw 
threads. This was found to be difficult to remove and 
could have had the effect of reducing the roughness 

where C = 0.154, II = 0.72. 
At the lower end some departure is apparent and it 

would no doubt be possible to obtain an improved 
fit with a more complex correlation but in view of the 
rather limited data this would not seem justifiable. 

The authors are well aware that the procedure of 

obtaining a correlation from only three roughness 
forms is clearly questionable, but a large amount of 

experimental work would be necessary to obtain a 
general correlation. The suggested correlation accounts 
for the influence of the surface roughness by separating 
this effect from that of the main flow and should ailow 
the calculation method to include a wider range of 
boundary conditions than those specifically used in 
establishing the correlation. 

The remainder of this section will show comparisons 

of the predictions using the above correlation with the 
measurements. The additional correlation necessary for 

the heat transfer will be discussed below. 

5.2. Flow und friction mectsurements und predictions 
Figure 3 shows comparisons of measured and calcu- 

lated velocity profiles for the roughest pipe. The pre- 
dictions compare well and compared equally well for 
the other roughnesses. 

150- 

IZ.O- 

+ - 0.638x105 

0 I 1 , ,,,,I k 
IO 102 

Y+ 
I03 

Fit. 3. Measured and predicted velocity profiles for rough 
pipe 3. 
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which indicates that a correlation is possible for this 
quantity in the same way as for 1: in the form 

Re 

FIG. 4. Measured and predicted friction factors. 

Friction factor comparisons are shown on Fig. 4 
which includes the results of Furber and Cox [3]. 
Some difference was observed on the smallest rough- 
ness. The theoretical prediction based on the corre- 
lation of Fig. 2, which of course is based on results 
taken from Fig. 4, agrees well with the experimental 
values except in the transition region, where 
Nikuradse’s results show a more marked reduction. 
The simple power law correlation for lO+ however does 
not fit well at the lower end of the points on Fig. 2 
and the experimental behaviour could be more closely 
predicted by a better correlation in this region. How- 
ever, the prediction method produces the correct 
physical behaviour in that the friction factors all 
approach the smooth pipe curve at lower Reynolds 
numbers. 

5.3. Heat transfer 
The concept of cavity Stanton number has been used 

previously by Dipprey and Sabersky as was mentioned 
above. It was obtained in these experiments by deter- 
mining the value that was required to make the pre- 
diction agree with the experiments according to: 

1 1 1 
sr’= St (measured) - St (predicted) 

Here the measured Stanton number is based on the 
wall to bulk temperature difference while the predicted 
value is based on the hypothetical surface to bulk 
difference. It follows that the cavity value St’ is based 
on the wall to hypothetical surface difference. 

The result of this procedure is shown on Fig. 5, 

IO 50 100 I50 
e+ 

FIG. 5. Correlation for the cavity Stanton number variation. 

$ = 52[e+]'.' 

or assuming the usual Prandtl number dependence 

i = 60[e+]0~2[Pr]0~4. 

Note also that the “cavity Stanton number” in this 
work is based on the bulk velocity instead of the friction 
velocity used by Dipprey and Sabersky. 

300 ‘, 

Experiment Prediction Re 
+ 

0 = 0.74x10 
0.23x 10: 

0 01 01 IO 

Y/r, 
FIG. 6. Measured and predicted temperature profiles for 

rough pipes. 

The remainder of this section is concerned with com- 
parisons made using this correlation. Figure 6 shows 
temperature traverses compared with predictions and 
in this and all subsequent comparisons the predictions 
were made using the uniform wall heat flux boundary 
condition. In the central region only moderate agree- 
ment is shown but it should be borne in mind that in 
addition to the empirical constants involved in the 
determination of velocity and eddy diffusivity the addi- 
tional assumption of a turbulent Prandtl number is 
required (taken as 0.9 in these predictions). 

Figure 7 shows smooth pipe results for the variation 
of Stanton number in the entrance region. Here the 
results are also compared with the theoretical results 
of Deissler [ 121 and Sparrow et al. [ 131 and exper- 
imental results of Wolf and Lehman quoted in [13]. 

10 20 
x/d 

30 40 

FIG. 7. Stanton number variation in the thermal entrance 
region of a smooth pipe. 
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A similar method for the velocity and eddy diffusivity 
predictions was used in [ 131 but an eigenvalue method 
was used for the thermal solution. These predictions 
are probably better than the present numerical solu- 
tions and indicate that our mixing length variation 
could perhaps be improved. The effect of Reynolds 
number is small in the entrance region, Uniform wall 
temperature boundary conditions were also calculated 
but differed only slightly from uniform wall heat flux. 

Experiment Predictmn Re 

20 
x/d 

FIG. 8. Stanton number variation in the thermal entrance 
region for rough pipe 3. 

1”IIY 

Experiment [31 
Rough pipe I . A 
Rough pipe l 0 

5 gyJhPIP’ : 0 Predlctlon- 
Correlation of [6]--- 

I x 1oPl I I 
104 105 106 

Re? 

FIG. 9. Fully developed Stanton number in rough and 
smooth pipes. 

‘@2 

K 
z 

i 

-___ -_a---A--e 
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i Pr=594 -- 
* q- -$;‘4,--__ _ 

--__ cf/2 

(0) es,r=O 0138 Smo;<pplpe 

I 0-Z 
xx YX xxx Cf/2 

0 

$ 

171 -I ---, O 0 

L-z&,, 
---. 

O Pr=l.2 
--_,” 

z 
GTQ--_ __&<r_=5.94 

‘--‘= 
( b 1 es,r=O 0488 --_,,cf/2 

Smooth pipe 

@L 
104 

FIG. 10. Comparison of theory with experimental Stanton 
numbers and friction factors for sand grain roughness of 
Dipprey and Sabersky [6]. (a) e,/r = 0.0138. (b) e,/r = 0.0488. 

Figure 8 shows similar predictions and measure- 
ments for the roughest pipe and it is clear that the 
variation of Stanton number is the same in the entrance 

region as the smooth pipe. 
Figure 9 shows the fully developed Stanton number 

variations with Reynolds number for all the rough 
pipes, Dipprey and Sabersky’scorrelation is also shown 

for comparison but gives results rather higher than 
those measured. Finally, as a test of the prediction 
method, the program was run for four of the situations 
measured in [6]. The agreement, shown on Fig. IO, is 
good. particularly as regards the effect of Prandtl 

number. 
To summari~ it would appear that the suggested 
correlations offer the possibility of calculating the 
pressure loss and heat transfer in pipes with continuous 
roughness and with thermal boundary conditions of 
any type including axial variation of heat flux or 

temperature. 

CONCLL’SIONS 

1. A prediction method has been proposed for flow 
and heat transfer in rough pipes in which the rough 
surface is replaced by a hypothetical surface of zero 
velocity at which there is a finite value of the mixing 

length. 
2. The method involves the choice of a number of 

empirical constants for which satisfactory choices of 

corresponding values appear to be the same as those 
suitable for smooth pipes. 

3. The additional correlations required for rough 
pipes are the surface mixing length and the cavity 
Stanton number variations. For distributed roughness 

these are 

1,’ = 0.154[r+]0.72 

and 

3 = 60[e”]oJ[Pr]o~~. 

4. With these choices predictions of velocity profiles, 
friction factors, temperature profiles and Stanton num- 
ber variations in the thermal entrance region show 
fairly good agreement with values measured in screw 

thread roughnesses and in sand grain roughnesses 
where the roughness heights are taken respectively as 
equal to the thread heights and half the sand grain size. 

Aclinowledgrmenfs-The authors are grateful to the Nuclear 
Power Group Limited who kindly donated the set of rough 
pipes and to A. C. Mugglestone and M. R. Heikal who 
assisted in the work. 
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PREVISION DU TRANSFERT DE CHALEUR DANS LES CONDUITES RUGUEUSES 
A L’AIDE DUNE METHODE DE LONGUEUR DE MELANGE 

R&sum&-Afin de determiner le transfert de chaleur dans les conduites rugueuses. on utilise une hypothise 

de longueur de melange qui presente une valeur finie sur une surface hypoth~tique sit&e au niveau des 
rugositis. Cette formulation ntcessite l’introduction de plusieurs paramttres empiriques, ces derniers ttant 
obtenus en effectuant la comparaison des previsions avec les experiences sur un ensemble de valeurs de 

ces parametres. Les experiences ont et& effect&es pour un tcoulement d’air dans des tubes corruguis a 
l’aide d’enroulements en helice dans un domaine de nombres de Reynolds allant de 2.104 B 3.10’. Des 
relations simples sont proposees pour les variations des deux parambtres empiriques les plus importants: 
la longueur de melange sur la surface et le nombre de Stanton des cavites. L’emploi de ces relations 
permet de rcsoudre num~riquement l’equation d’energie pour un tamlement unidirectionnel dans la 

zone d’etablissement du regime thermique pour des conditions aux limites quelconques et pour des 
nombres de Prandtl differents de l’unite. Un bon accord a ete obtenu avec les mesures dans la zone 

d’etablissement du regime thermique A flux par-fetal constant. 

EINE MISCHUN~SWEGL~NGEN-METHODE ZUR BESTIMMUNG DES 
WARMEUBERGANGS IN RAUHEN ROHREN 

Zusammenfassung-Zur Bestimmung des Warmelbergangs in rauhen Rohren wird eine Mischungs- 
weglange verwendet, welche so formuliert ist, daR sie an einer hypothetischen Oberhiiche innerhalb der 
Rauhigkeiten endliche Werte annimmt. Zur Formulierung dieser Mischungswegllnge werden sieben 
empirische Parameter beniitigt; diese werden tmter Verwendung einer Reihe solcher Parameter durch 
Vergleich von berechneten Werten mit Versuchswe~en ermittelt. Die Versuche wurden in luftdurch- 
striimten Rohren durchgefiihrt, welche Rauhigkeiten in Form eines Schraubengewindes aufwiesen. Die 
Reynoldszahl wurde von 2 x 10’ bis 3 x 10s variiert. Es werden einfache Korrelationsformeln zur 
Darstellung der Abhangigkeit von den beiden wichtigsten empirischen Parametern, namlich der 
Mischungswegllnge an der Oberfllche und der Stantonzahl in den Rauhigkeitsvertiefungen, vorgeschlagen. 
Fur den Fall der eindimensionalen Striimung ermoglichen diese Beziehungen eine numerische Losung 
der entsprechenden Energiegleichung fiir den thermischen Einlaufbereich fur jede Form der thermischen 
Randbedingungen und fiir von 1 abweichende Prandtlzahlen. Bei konstanter W~rmestromdichte an der 

Rohrwand ergibt sich im thermischen Einlaufbereich eine gute ~bereinstimmung mit MeBwerten. 

I-IPMMEHEHME METOAA IIYTM CMEUJEHMI1 An3 PACYETA TEIIJIOO6MEHA 
B BJEPOXOBATblX TPYGAX 

A~o~~~ - Meron nyTn CMemeHWn, B KOTOt3oM UCnOnb3yeTca KOtleWaR BeJtWHHa JWHIibl nyTR 

CMemeHNil Ha HeKOTOpOk rnnOTeTWIeCK0~ nOEEKpXHOCTn nnn HaflWYWH IIIepOXOBaTOCTn, WCnOJlb- 

3yeTcR nna paNeTa Tennoo6MeHa B mepOXOnaTblX Tpy6ax. npH TaKOM nonxoae Tpe6yeTcn onpene- 

JlHTb HeCKOnbKO 3MnnpnYeCKtiX napaMeTpOB, K OHW 6blnki HaCiJJeHbl nyTeM CpaBHeHnn PaC’leTOB B 

LWana3OHe 3THX napaMeTpOB C 3KCnenWMeHTaJrbHblMW ,QaHHbIMA. Ir)KCnepHMeHTbt npOBOJWJmCb LtJlSI 

Te’IeHHII BO3nyXa B TpyGax, lllenOXOBaTOCTb BHyTpn KOTOnblX HaHeCeHa B Em&e BHHTOBOtt tESb6bl, 

B JWana’3OHe WiCITa PefiHOJtbLICa OT 2 X lo4 A0 X 16’. i-@,LlJlOIKeHbt npOCTble 3aBHCnMOCTB nnK 

OnNCaHWR ~3MeHeH~~ n6yX Hau6onee BaXCHbrX 3Mn~p~qeCK~X napaMeTpO0, a UMeHHO: 3HaYeHWII 

LVTRHbi nyTN CMemeHHa Ha noE%epXHOCTU II WCJTa CTaHTOHa nJ,sI IIOJIOCTA. 3Tn 3aBWCUMOCTN nO3BO: 

flnK)T WCJTeHHO netIlkiTb ypaBHeHne 3Henrnn B COOTBeTCTByKWeM BR,Ue ,LVTn OI.THOMenHOrO Te’ieHWR 

Ha BXOnHOM TennOBOM y’laCTKe npn nro6oM TenJIOBOM rpaHti’iHOM yCJtOBnn Ti WCJlaX ffpaHnTnn, 

0Tnkilinbrx 0~ enkiHwb1. IloKasaHo xopomee cornacoBawie H3MepewiA wn TennoBoro HaqanbHoro 
ygacwa c paeHot4epHblM pacnpeneneriueh4 norotca renna Ha crentce. 


